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Outline

• Introduction


• Construction of database


• Comparison of ML with physical models of Solar wind Propagation delay


• Extract information from trained ML model


• Conclusion
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Solar wind
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Introduction
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Orbit speed: 30km/s

SW Speed: 300-1000km/s
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Solar wind propagation delay
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L1
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Solar wind propagation delay
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𝑇𝑑
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Database and ML approach
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• Feature set: 

• Solar Wind speed(Vx, Vy, Vz) 

• Position of ACE (Rx, Ry, Rz) 

• DST index, info on magnetospheric state


• Independent variable: Td

• Solar wind Propagation delay


• Database contains 380 interplanetary shocks

• 380 individual measurements of Td


• ML algorithms:

• Random Forest, Gradient boost, linear regression
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Physical models of the solar wind propagation delay
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𝑇𝑣𝑒𝑐𝑡𝑜𝑟 =
(→𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 − →𝑟 𝐴𝐶𝐸) ∙ →𝑛

→
𝑉 𝑆𝑊 ∙ →𝑛

𝑇𝑓𝑙𝑎𝑡 =
∆𝑋
𝑉𝑋
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Comparison ML and physical model performance
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Real-time Validation

• Exploring model performance as a function of 
train/test split ratio on unseen data


•  Vector method performs consistently well but 
RF out-performs when choosing 80/20 or 
90/10 split


• All model performances decrease & highly 
variable as test size becomes <10% (not 
statistically reliable)


• RF model would benefit from more training 
instances
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Feature importance

11

• Drop column feature importance compares a 
fully trained model with a model omitting a 
feature


• RMSE is used as metric


• Drop clumn FI: Change of RMSE when a 
feature is not used for training


• Positive values indicate worse performance, 
negative values indicate increase of 
performance


• Cross validation has been applied to 
investigate mean behavior
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Shapley Value – Impact on model output
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• Lloyd Shapley 1953 proposed a measure to 
identify the bonus due to cooperation within a 
cooperative game. 


• The surplus that each player contribute to the 
outcome of the game is called Shapley value 
today. 


• The principle can also be applied to the random 
forest regression of this study where its feature 
resemble Shapley's players.


• python package SHAP derives Shapley values

Vx[km/s] Vy Vz Rx[RE] Ry Rz DST Td[min]

-469 -14 0.6 233 0.89 0.29 -12 47

Mean random forest behavior
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Conclusions

• Trained ML algorithm can predict the Solar wind 
propagation delay


• Results show better accuracy than flat and also 
vector method for SW delay prediction


• Shapley Value can be used to further analyse the 
analyze the 


• The role of Earth‘s orbital speed within the SW 
delay problem has been discovered (maybe)


• Realtime application for L1 warning system
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Thank you for your attention.
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Extra


